Answer:
Option C
Explanation:
Using Arrhenius equation
$K= A.e^{-\frac{E_{a}}{Rt}}$
$\log k=\log A-\frac{E_{a}}{2.303 RT}$
$\log k_{1}=\log A-\frac{E_{a(1)}{}}{2.303 RT}$ ...............(i)
and $\log k_{2}=\log A-\frac{E_{a(2)}{}}{2.303 RT}$ ...........(ii)
or $\log \frac{k_{2}}{k_{1}}=\frac{1}{2.303 RT}[E_{a(1)}-E_{a(2)}]$
( from (i) and (ii))
$=\frac{1}{2.303 \times8.314\times300}[76000-57000]$
or $=\log\frac{k_{2}}{k_{1}}=\frac{19000}{2.303\times8.314\times300}$
$=\frac{190}{6.9\times8.314}$
or $=\frac{k_{2}}{k_{1}}=2000$ [taking antilog]